Colorful monochromatic connectivity
نویسندگان
چکیده
An edge-coloring of a connected graph is monochromatically-connecting if there is a monochromatic path joining any two vertices. How “colorful” can a monochromatically-connecting coloring be? Let mc(G) denote the maximum number of colors used in a monochromatically-connecting coloring of a graph G. We prove some nontrivial upper and lower bounds for mc(G) and relate it to other graph parameters such as the chromatic number, the connectivity, the maximum degree, and the diameter.
منابع مشابه
Colored graphs without colorful cycles
A colored graph is a complete graph in which a color has been assigned to each edge, and a colorful cycle is a cycle in which each edge has a different color. We first show that a colored graph lacks colorful cycles iff it is Gallai, i.e., lacks colorful triangles. We then show that, under the operation m◦n ≡ m+n−2, the omitted lengths of colorful cycles in a colored graph form a monoid isomorp...
متن کاملColorful Paths in Vertex Coloring of Graphs
A colorful path in a graph G is a path with χ(G) vertices whose colors are different. A vcolorful path is such a path, starting from v. Let G 6= C7 be a connected graph with maximum degree ∆(G). We show that there exists a (∆(G) + 1)-coloring of G with a v-colorful path for every v ∈ V (G). We also prove that this result is true if one replaces (∆(G) + 1) colors with 2χ(G) colors. If χ(G) = ω(G...
متن کاملOn swap-distance geometry of voting rules
Axioms that govern our choice of voting rules are usually defined by imposing constraints on the rule’s behavior under various transformations of the preference profile. In this paper we adopt a different approach, and view a voting rule as a (multi-)coloring of the election graph—the graph whose vertices are elections over a given set of candidates, and two vertices are adjacent if they can be...
متن کاملColorful paths for 3-chromatic graphs
In this paper, we prove that every 3-chromatic connected graph, except C7, admits a 3-vertex coloring in which every vertex is the beginning of a 3-chromatic path. It is a special case of a conjecture due to S. Akbari, F. Khaghanpoor, and S. Moazzeni, cited in [P.J. Cameron, Research problems from the BCC22, Discrete Math. 311 (2011), 1074–1083], stating that every connected graph G other than ...
متن کاملKernels by monochromatic paths and the color-class digraph
An m-colored digraph is a digraph whose arcs are colored with m colors. A directed path is monochromatic when its arcs are colored alike. A set S ⊆ V (D) is a kernel by monochromatic paths whenever the two following conditions hold: 1. For any x, y ∈ S, x 6= y, there is no monochromatic directed path between them. 2. For each z ∈ (V (D)− S) there exists a zS-monochromatic directed path. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 311 شماره
صفحات -
تاریخ انتشار 2011